

Luna Labs, Matthew Merrill

Nooter/Eriksen

Trimeric Corporation

Luna's FlueCO₂ membranes enable cost-effective carbon capture with minimal impact on natural gas combined cycle power plant performance.

The FlueCO₂ Concept

- Unique dual phase membrane technology
- Integrates into the heat recovery steam generator (HRSG) of natural gas combined cycle (NGCC) power plants
 - The NGCC fleet is the highest impact market
- Power + CO₂ capture is profitable at low electricity prices (22 – 35 \$/MWe)
 - Win by being the first plant turned on by dispatcher
- Capture CO₂ except in emergencies (>400 \$/MWe)
 - Achieved with high energy efficiency

The FlueCO₂ Team

Matt Merrill (PI) Greg Simms Jesse Kelly Luna Labs: Contract Research & Tech Incubator focused on Product Development

- Membrane technology
- Plant concept
- Cost modeling

Shaun Hennessey Nathan Ross Greg Bommarito Nooter/Eriksen: world leading supplier of HRSG technology

- Plant design & operation guidance
- Plant performance simulation (Thermoflex)
- Lead multi-physics modeling (ANSYS)

Andrew Sexton Katherine Dombrowski Anne Ryan Trimeric Corporation: process engineering firm with CO₂ capture expertise

- Techno-economic analysis & review
- Compression & condensation simulation
- Equipment & design guidance

Design and Costing Methodology

- Strict adherence to National Energy Technology Laboratory (NETL) methodologies
 - FlueCO₂ NGCC design derived from control plant (B31A)
- Interactive spreadsheet calculator available upon request
 - 30-yr NPV, LCOE, breakevens, BEC→TASC, OpEx, etc.
- Dynamic cost modeling tool for analyzing scenarios
 - Optimize plant design and operation
 - Automated data visualization tools

Thermoflex model of FlueCO₂ NGCC

Low Capital Costs, High Efficiency, Fast Response

- Minimal addition to total NGCC plant capital costs
 - Avoid compounding effects of taxes, financing, & insurance
- FlueCO₂ capture only causes 7% loss in net MWe output
 - ↑ Efficiency → ↓ 'turn on' MWe price → ↑ annual capacity
- FlueCO₂ NGCC responds ~as fast as B31A NGCC
 - Effectively capture the profitable electricity market opportunity

Optimization of Plant Design & Operation

- NGCC fast-start capabilities caused < +/-\$40M on 30-yr NPVs
- Optimize operational forecasting caused < +\$50M on 30-yr NPVs
- Robust FlueCO₂ NGCC design and operational parameters
 - Minimal customization required for a given scenario
 - Maintain competitiveness despite future market uncertainties
- Cost optimization of membrane unit size yields 96 99% CO₂ capture rates
 - Membrane manufacturing and lifetime costs are main uncertainty
 - Scale up and demonstrate membranes as fast as possible

Categorization of hot, warm, and cold starts for FlueCO₂ NGCC in Princeton BaseCaseTax scenario

Economically optimal CO₂ capture rates based on spreadsheet (lines) and dynamic (points) modeling

NPV-Optimized Performance

- The electricity price and emissions tax scenarios all effectively induce CO₂ capture
 - FlueCO₂ w/ capture outcompetes B31A w/out capture
- FlueCO₂ NGCC operates profitably in most scenarios
 - CO₂ is captured during >99% of operation time
- FlueCO₂ NPV typically ~\$1B greater than B31B
 - B31B response time assumed as fast as B31A

Summary of 30-yr NPV performance results across all ARPA-E FLECCS price & tax structures

Phase II/IIS SBIR Planning

Team:

- FlueCO₂ Innovation: Luna
- Process engineering: Trimeric
- Manufacturing: in progress
- Supplier/Integrator: Nooter/Eriksen
- Purchasing, Equipment, & Construction: in progress
- Investor: in progress

Programmatic Objectives:

- 1. Advance plant design & costing
 - Modern, Micro, & Retrofit
 - Membrane targeting
- 2. Scale up membranes
 - Materials & manufacturing
 - 0.2 tonne/day demonstration
- 3. Commercialization
 - IP protection & dissemination
 - Partnerships & investment

FlueCO₂ Summary

- High Capture Rate
- High Market Size
- Robust Plant Design
- Enables practical CO₂ emission taxes
- Membranes: TRL 4/5

FlueCO₂ and state-of-the-art attributes for FLECCS scenarios

#	SPECIFICATION	VALUE	CONTEXT
1:	Levelized Cost of Electricity	42 – 78 \$/MWe	B31A = 31 - 62 \$/MWe; B31B = 60 - 113 \$/MWe
2:	Breakeven Sales Price (credit)	36 – 71 \$/tonne CO ₂	B31B = 89 - 175 \$/tonne CO ₂
3:	Breakeven Emission Penalty (tax)	53 – 106 \$/tonne CO ₂	B31B = 114 - 226 \$/tonne CO ₂
4:	CO ₂ Capture Rate	96 – 99%	B31B = 90%
5:	Energy Cost vs B31A	7%	B31B = 11% vs B31A
6:	Total Overnight Cost	1,586 \$/kW	B31A = 990 \$/kW; B31B = 2,505 \$/kW
7:	370 MW HRSG Footprint Length	1.4 m	Based on multiphysics modeling for N/E HRSG
8:	Carbon Capture PEC	\$280,000 per tonne/hr CO ₂	Purchased Equipment Costs governed by membrane and CO ₂ compressor costs

